
Abstract - Receive side scaling (RSS) is a NIC technology 
that provides the benefits of parallel receive processing in 
multiprocessing environments. However, RSS lacks a critical 
data steering mechanism that would automatically steer 
incoming network data to the same core on which its application 
thread resides. This absence causes inefficient cache usage if an 
application thread is not running on the core on which RSS has 
scheduled the received traffic to be processed and results in 
degraded performance. To remedy the RSS limitation, Intel’s 
Ethernet Flow Director technology has been introduced. 
However, our analysis shows that Flow Director can cause 
significant packet reordering. Packet reordering causes various 
negative impacts in high-speed networks. We propose a NIC data 
steering mechanism to remedy the RSS and Flow Director 
limitations. This data steering mechanism is mainly targeted at 
TCP. We term a NIC with such a data steering mechanism “A 
Transport Friendly NIC” (A-TFN). Experimental results have 
proven the effectiveness of A-TFN in accelerating TCP/IP 
performance. 

Indexed Terms – TCP/IP, Parallel Network Stacks, Core 
Affinity, High Performance Networking, 40GigE, 100GiE. 

1. Introduction & Motivation 

Computing is shifting towards multiprocessing. The 
fundamental goal of multiprocessing is improved performance 
through the introduction of additional hardware threads, 
CPUs, or cores (all of which will be referred to as “cores” for 
simplicity). The emergence of multiprocessing has brought 
both opportunities and challenges for TCP/IP performance 
optimization in such environments. Modern network stacks 
can exploit parallel cores to allow either message-based 
parallelism or connection-based parallelism as a means of 
enhancing performance [1]. To date, major network stacks 
such as Windows, Solaris, and Linux have been redesigned 
and parallelized to better utilize additional cores. While 
existing OSes exploit parallelism by allowing multiple threads 
to carry out network operations concurrently in the kernel, 
supporting this parallelism carries significant costs, 
particularly in the context of contention for shared resources, 
software synchronization, and poor cache efficiencies. 
However, investigations [2][3][4] indicate that CPU core 
affinity on network processing in multiprocessing 
environment can significantly reduce contention for shared 
resources, minimize software synchronization overheads, and 
enhance cache efficiency.  

Core affinity on networking processing has the following 
goals: (1) Interrupt affinity: Network interrupts of the same 
type should be directed to a single core. Redistributing 
network interrupts in either a random or round-robin fashion 
to different cores has undesirable side effects [3]. (2) Flow 
affinity: Packets belong to a specific TCP flow should be 
processed by the same core. TCP has a large and frequently 
accessed state that must be shared and protected when packets 
from the same connection are processed. Flow affinity reduces 
contention for shared resources, minimizes software 

synchronization, and enhances cache efficiency. (3) Network 
data affinity: Incoming network data should be steered to the 
same core on which its application thread resides. This is 
becoming more important with the advent of Direct Cache 
Access (DCA) [5]. 

The emergence of parallel network stacks and the 
necessity of core affinity on network processing in 
multiprocessing environment require new NIC designs. An 
NIC should not only provide mechanisms to allow parallel 
receive processing to better utilize parallel network stacks, but 
also to facilitate core affinity on network processing in 
multiprocessing environments. RSS [6] is a NIC technology 
that steps toward that direction. RSS supports multiple receive 
queues; it assigns packets of the same data flow to a single 
queue and evenly distributes traffic flows across queues. With 
Message Signal Interrupt (MSI/MSI-X) support, each receive 
queue is assigned a dedicated interrupt and RSS steers 
interrupts on a per-queue basis. RSS provides the benefits of 
parallel receive processing in multiprocessing environments. 
However, RSS has a limitation: it cannot steer incoming 
network data to the same core where its network application 
thread resides. The reason is simple: RSS does not maintain 
the relationship “Traffic Flows → Network applications → 
Cores” in the NIC. Since network applications run on cores, 
we simply put it as “Traffic Flows → Cores (Applications)”. 
This is symptomatic of a broader disconnect between existing 
software architecture and multicore hardware. With OSes like 
Windows and Linux, if an application thread is running on one 
core, while RSS has scheduled received traffic to be processed 
on a different core, poor cache efficiency and significant core-
to-core synchronization overheads will result, The overall 
system efficiency may be severely degraded (see Section 2).  

In parallel to our research, Intel has introduced the 
Ethernet Flow Director technology [7]. The basic idea is 
simple: Flow Director maintains the relationship “Traffic 
Flows → Cores (Applications)” in the NIC. Flow Director not 
only provides the benefits of parallel receive processing in 
multiprocessing environments, it also can automatically steer 
packets of a specific data flow to the same core on which its 
application thread resides. However, our research shows that 
Flow Director can cause significant packet reordering in 
multiprocessing environments [see Section 2.5]. In high-speed 
networks, packet reordering causes various negative impacts 
[8][9]. In addition, TCP Selective Acknowledgement (SACK) 
is now implemented and enabled by almost all general-
purpose OSes. When packet reordering occurs, processing or 
generating TCP SACK information can seriously degrade the 
TCP sender or receiver’s performance [10]. For example, the 
receiver would sort the out-of-order queue to generate SACKs 
in the event of packet reordering. Sorting the out-of-order 
queue is expensive, especially when the queue is large. 
Because the networking community is working towards 
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40GigE and 100GigE, the performance requirements on 
TCP/IP are becoming more challenging. Flow Director’s 
packet reordering problem becomes more serious.   

We propose a NIC mechanism to remedy the RSS and 
Flow Director limitations. It steers incoming network data to 
the same core on which its application thread resides and 
ensures in-order packet delivery. Our data steering mechanism 
is mainly targeted at TCP, but can be extended to UDP and 
SCTP. We term a NIC with such a data steering mechanism A 
Transport-Friendly NIC, or A-TFN. As Flow Director, A-TFN 
maintains the relationship “Traffic Flows → Cores 
(Applications)” in the NIC, with OSes correspondingly 
enhanced to support such capability. For transport layer 
traffic, A-TFN maintains a Flow-to-Core table in the NIC, 
with one entry per flow. Each entry tracks which core a flow 
should be assigned to. However, A-TFN is different from 
Flow Director in two significant ways: (1) A-TFN applies a 
very simple yet effective mechanism to update the Flow-to-
Core table in the NIC. It requires the most minimal OS 
support (see Section 3). However, to support Flow Director, 
OS must be multiple TX queue capable [11]. Therefore, A-
TFN is simpler and minimizes changes in the OS. And (2) A-
TFN has a mechanism to ensure in-order packet delivery. 
Flow Director does not have such a mechanism and our 
analysis and experiments show that Flow Director can cause 
significant packet reordering in multiprocessing environments. 

To design A-TFN, there is an obvious trade-off between 
the amount of work done in the NIC and in the OS. In the 
paper, we discuss two design options. Option 1 is to minimize 
changes in the OS and focuses instead on identifying the 
minimal set of mechanisms to add to the NIC. This design 
adds complexity and cost to the NIC. On the other end of the 
design space, it could be let the OS update the flow-to-core 
table directly without changing anything in the NIC hardware 
(option 2). Conceptually, this approach could be fairly 
straightforward to implement. However, it might add 
significant extra communication overheads between the OS 
and the NIC, especially when the Flow-to-Core table gets 
large. Due to space limitation, this paper is mainly focused on 
the first design option. The new NIC is emulated in software 
and it shows that the solution is effective and practical to 
remedy the limitations in RSS and Flow Director. In future 
work, we will explore the second design option.  

The contributions of this paper are fourfold. First, we 
show for certain OSes, such as Linux, that tying a traffic flow 
to a single core does not necessarily ensure flow affinity or 
network data affinity. Second, we show that RSS lacks a 
mechanism to automatically steer packets of a data flow to the 
same core(s) on which its application thread resides. Third, we 
show that Flow Director can cause significant packet 
reordering in multiprocessing environments. Flow Director 
lacks mechanisms to ensure in-order packet delivery when it 
steers packets across cores. Fourth, we propose the A-TFN 
mechanism to remedy the limitations in RSS and Flow 
Director. Experimental results have proven the effectiveness 
of A-TFN in accelerating TCP/IP performance. Because the 
networking community is headed for 40GigE and 100GigE, 

the performance requirements on TCP/IP are more 
challenging; further architecture optimizations and technology 
advances are necessary. A-TFN is working toward that 
direction and is timely. 

The remainder of the paper is organized as follows: In 
Section 2, we present problem formulation. Section 3 
describes the A-TFN mechanism. In section 4, we discuss 
experiment results that showcase the effectiveness of our A-
TFN mechanism. In section 5, we present related research. We 
conclude in section 6. 

2. Problem Formulation 

2.1 Packet Receive Processing with RSS 

RSS is a NIC technology. It supports multiple receive 
queues and integrates a hashing function in the NIC. NIC 
computes a hash value for each incoming packet. Based on 
hash values and an indirection table, NIC assigns packets of 
the same data flow to a single queue and evenly distributes 
traffic flows across queues. With Message Signal Interrupt 
(MSI/MSI-X) and Flow Pinning support, each receive queue is 
assigned a dedicated interrupt and tied to a specific core. The 
device driver allocates and maintains a ring buffer for each 
receive queue within system memory. For packet reception, a 
ring buffer must be initialized and pre-allocated with empty 
packet buffers. The ring buffer size is device- and driver-
dependent. Fig. 1 illustrates packet receive-processing with 
RSS: (1) When incoming packets arrive, the hash function is 
applied to the header to produce a hash result. The hash result 
is used to index the indirection table. The indirection table is 
the data structure that contains an array of core numbers to be 
used for RSS. Each lookup from the indirection table 
identifies the core and hence, the associated receive queue. (2) 
The NIC assigns incoming packets to the corresponding 
receive queues. (3) The NIC DMAs (direct memory access) 
the received packets into the corresponding ring buffers in the 
host system memory. (4) The NIC sends interrupts to the cores 
that are associated with the non-empty queues. Subsequently, 
the cores respond to the network interrupts and process 
received packets up through the network stack from the 
corresponding ring buffers one by one. Appendix A has more 
details of RSS mechanisms. 

The OS can periodically rebalance the network load on 
cores by updating the indirection table, based on the 
assumption that the hash function will evenly distribute 

 
Fig. 1 Packet Receiving Process with RSS 



incoming traffic flows across the indirection table entries. 
Since the OS does not know which specific entry in the 
indirection table an incoming traffic flow will be mapped to, it 
can only passively react to load imbalance situations by 
changing each core’s number of appearances in the indirection 
table. For better load balancing performance, the size of the 
indirection table is typically two to eight times the number of 
cores in the system [6]. For example, in Fig. 1, the indirection 
table has 8 entries, which are populated as shown. As such, 
traffic loads directed to Core 0, 1, 2, and 3 are 50%, 25%, 
12.5%, and 12.5%, respectively. 

2.2 RSS Limitation and the Reasons 

RSS provides the benefits of parallel receive processing. 
However, this mechanism does present certain limitation: it 
cannot steer incoming network data to the same core on which 
its application thread resides. The reason is simple: RSS does 
not maintain the relationship “Traffic Flows → Cores 
(Applications) in the NIC. When packets arrive, the hash 
function is applied to the header to produce a hash result. 
Based on the hash values, the NIC assigns packets to receive 
queues and then cores, with no way to consider on which core 
the corresponding application thread is running. Although 
receive queues can be instructed to send interrupt to a specific 
set of cores, existing general purpose OSes can only provide 
limited process-to-interrupt affinity capability; network 
interrupt delivery is not synchronized with process scheduling. 
This is because the OS schedulers have other priorities, such 
as load balancing and fairness, over process-to-interrupt 
affinity. Besides, multiple network applications’ traffic might 
map to a single interrupt, which brings new challenges to an 
OS scheduler. Therefore, a network application thread might 
be scheduled on cores other than those where its 
corresponding network interrupts are directed. This is 
symptomatic of a broader disconnect between existing 
software architecture and multicore hardware. 

OSes like Windows implement the function of the 
indirection table, which can provide limited data steering 
capabilities for RSS. However, it still cannot steer packets of a 
data flow to the same core where the application thread 
resides. Turning again to Fig 1, network application thread P 
is scheduled to run on Core 3. Its traffic might be hashed to an 
entry that directs to other cores. The OS does not know which 
specific entry in the indirection table a traffic flow will be 
mapped to. 

With existing RSS capability, there are many cases in 
OSes in which a network application resides on cores other 
than those to which its corresponding network interrupts are 
directed: (1) A single-threaded application might handle 
multiple concurrent TCP connections. Assuming such an 
application handles n concurrent TCP connections and runs on 
an m-core system, an RSS-enabled NIC will evenly 
(statistically) distribute the n connections across the m cores. 
Since the application thread can only run on a single core at 
any moment, only n/m connections' network interrupts are 
directed to the same core where the application runs. (2) Soft 
partition technologies like CPUSET [12] are applied in the 

context of networking environments. Since the OS (or system 
administrator) has no way of knowing to which specific core 
they will be mapped, network applications might be soft-
partitioned on cores other than those to which their network 
interrupts are directed. (3) The general purpose OSes 
scheduler prioritizes load balancing or power saving over 
process-to-interrupt affinity [13][14]. For OSes like Linux, 
when the multicore peak performance mode is enabled, the 
scheduler tries to use all cores in parallel to the greatest extent 
possible, distributing the load equally among them. When the 
multicore power saving mode is enabled, the scheduler is 
biased to restrict the workload to a single physical processor. 
As a result, a network application might be scheduled on cores 
other than those to which its network interrupts are directed. 
For clarity, we illustrate the above cases in Fig. 2. The system 
contains two physical processors, each with two cores. P1 – 
P5 are processes that run within the system. P1 is a network 
application thread that includes traffic flows. An RSS-enabled 
NIC steers the traffic flows to different cores, as shown in the 
figure (red arrows). In all of these cases, P1 resides on cores 
other than those to which its corresponding network interrupts 
are directed. 

On OSes like Windows, when a core responds to the 
network interrupt, the corresponding interrupt handler is 
called, within which a deferred procedure call (DPC) is 
scheduled. On the core, DPC processes received packets up 
through the network stack from the corresponding ring buffer 
one by one [15]. Therefore, on Windows, tying a traffic flow 
to a single core does ensure interrupt affinity and flow affinity. 
However, if network interrupts are not directed to cores on 
which the corresponding applications reside, network data 
affinity cannot be achieved, resulting in degraded cache 
efficiency [6]. This reality might cause serious performance 
degradation for NUMA systems. On some OSes, like Linux, 
tying a traffic flow to a single core does not necessarily ensure 
flow affinity or network data affinity due to Linux TCP’s 
unique prequeue-backlog queue design. In the following 
sections, we discuss in detail why the combination of RSS and 
Flow Pinning cannot ensure flow affinity and network data 
affinity in Linux. 
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Fig. 2 Network Irqs and Apps. on Different Cores 



2.3 Linux Network Processing in Multicore Systems 

Linux allows multiple threads to simultaneously process 
different packets from the same or different connections. Two 
types of threads may perform network processing in Linux: 
application threads in process context and interrupt threads in 
interrupt context. When an application makes socket-related 
system calls, that application’s process context may be 
borrowed to carry out network processing. When a NIC 
interrupts a core, the associated handler services the NIC and 
schedules the softirq, softnet. Afterwards, the softnet handler 
processes received packets up through the network stack in 
interrupt context. TCP is a connection-oriented protocol, and it 
has a large and frequently accessed state that must be shared 
and protected. In the case of the Linux TCP, the data structure 
socket maintains a connection’s various TCP states, and there 
is a per-socket lock to protect it from unsynchronized access. 
The lock consists of a spinlock and a binary semaphore. The 
binary semaphore construction is based on the spinlock. In 
Linux, since an interrupt thread cannot sleep, when it accesses 
a socket, the socket is protected with the spinlock. When an 
application thread accesses a socket, the socket is locked with 
the binary semaphore and is considered “owned-by-user.” The 
binary semaphore synchronizes multiple application threads 
among themselves. It is also used as a flag to notify interrupt 
threads that a socket is “owned-by-user” to coordinate 
synchronized access to the socket between interrupt and 
application threads. Our previous research [16][17] studied the 
details of the Linux packet receiving process. Here, we simply 
summarize Linux TCP processing of the data receive path in 
interrupt and process contexts, respectively. 

a) TCP Processing in Interrupt Context   
(1) When the NIC interrupts a core, the network interrupt’s 

associated handler services the NIC and schedules the 
softirq, softnet.  

(2) The softnet handler moves a packet from the ring buffer 
and processes the packet up through the network stack. If 
there is no packet available in the ring buffer, the softnet 
handler exits. 

(3) A TCP packet (segment) is delivered up to the TCP layer. 
The network stack first tries to identify the socket to 
which the packet belongs, and then seeks to lock 
(spinlock) the socket. 

(4) The network stack checks if the socket is 
“owned-by-user” or if an application thread is 
sleeping and awaiting data: 
• If yes, the packet will be enqueued into 

the socket’s backlog queue or prequeue. 
TCP processing will be performed later in 
process context by the application thread. 

• If not, the network stack will perform 
TCP processing on the packet in interrupt 
context. 

(5) Unlock the socket; go to step 2. 

b) TCP Processing in Process Context   
(1) An application thread makes a socket-related 

receive system call. 

(2) Once the system call reaches the TCP layer, the network 
stack seeks to lock (semaphore) the socket first. 

(3) The network stack moves data from the socket into the 
user space, and generates ACKs. 

(4) If the socket’s prequeue and/or backlog queue are not 
empty, the calling application’s process context will be 
borrowed to carry out TCP processing. 

(5) Unlock the socket and return from the system call.  
For the data transmit path, network processing starts in 

the process context when an application makes socket-related 
system calls to send data. If TCP gives permission to send 
(based on TCP receiver window, congestion window, and 
sender window statuses), network processing in process 
context can reach down to the bottom of the protocol stack. 
Otherwise, transmit side network processing is triggered by 
incoming TCP ACKs for the data receive path, which are 
performed in their execution environments (interrupt or 
process contexts). In this paper, we focus mainly on receive 
side processing because it is known to be more memory 
intensive and complex, and TCP processing on the transmit 
side is also dependent on ACKs in the data receive path. 

As described above, whether TCP processing is 
performed in process or interrupt contexts depends on the 
volatile runtime environments. For example, we used FTP to 
download Linux kernels from www.kernel.org and 
instrumented the Linux network stack to record the percentage 
of traffic processed in process context. The recorded 
percentage ranged from 50% to 75%. In a multicore system, 
when an application’s process context is borrowed to execute 
the network stack, TCP processing is performed on the core(s) 
where the application is scheduled to run. When TCP 
processing is performed in interrupt context, it is performed on 
the cores to which the network interrupts are directed. Take, 
for example, Fig. 3, in which network interrupts are directed to 
core 0 and the associated network application thread is 
scheduled to run on core 1. In interrupt context, TCP is 
processed on core 0; in process context, this occurs on core 1. 
Since TCP processing performed in process or interrupt 
contexts depends on volatile runtime conditions, it may 
alternate between these two cores. Therefore, although the 
combination of RSS and Flow Pinning can tie a traffic flow to 
a single core, when a network application thread resides on 
some other core, TCP processing might alternate between 
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Fig. 3 Linux TCP Processing Contexts in the Data Receive Path 



different cores. We would achieve neither flow affinity nor 
network data affinity. 

2.4 Negative Impacts 

If a network application runs on cores other than those 
where its corresponding RSS network interrupts are directed, 
various negative impacts result. On both Windows and Linux 
systems, network data affinity cannot be achieved. On OSes 
like Linux, TCP processing might alternate between different 
cores even if the interrupts for the flow are pinned to a specific 
core. As a result, it will lead to poor cache efficiency and 
cause significant core-to-core synchronization overheads. 
Also, it renders the DCA technology ineffective. In multiple 
core systems, core-to-core synchronizations involve costly 
snoops and MESI operations [18], resulting in extra system 
bus traffic. This is especially expensive when the contending 
cores exist within different physical processors, which usually 
involves synchronous read/write operations to a certain 
memory location. In addition, for Linux, interrupt and 
application threads contend for shared resources, such as 
locks, when they concurrently process packets from the same 
flow. The socket’s spinlock, for example, would be in severe 
contention. When a lock is in contention, contending threads 
simply wait in a loop (“spin”), repeatedly checking until the 
lock becomes available. While waiting, no useful work is 
executed. Contention for other shared resources, such as 
memory and system bus, also occurs frequently. Since this 
intra-flow contention may occur on a per-packet basis, the 
total contention overhead could be severe in high network I/O 
environments. 

To demonstrate the negative 
impacts, we ran data 
transmission experiments over 
an isolated sub-network. 
Sender: Dell R-805; 2 Quad 
Core AMD Opteron 2346HE, 
1.8GHz; Broadcom NetXtreme 
II 1Gbps NIC; Linux 2.6.28. Receiver: SuperMicro Server; 2 
Intel Xeon CPUs, 2.66 GHz;  Intel PRO/1000 1Gbps NIC 
(DCA not supported); Linux 2.6.28. The receiver’s CPU 
architecture is as shown in Fig. 4.  

In the experiments we used iperf  [19] to send data in one 
direction. The sender transmitted one TCP stream to the 
receiver for 100 seconds. In the receiver, network interrupts 
were all directed to core 0. However, iperf was pinned to 
different cores: (1) Iperf was pinned to core 0 (network 
interrupts and applications were pinned to the same core). (2) 
Iperf was pinned to core 1 (network interrupts and applications 
were pinned to different cores, but within the same processor). 
(3) Iperf was pinned to core 2 (network interrupts and 
applications were pinned to different processors). The 
throughput rates in these experiments all saturated the 1Gbps 
link (around 940 Mbps). The experiments were designed to 
feature the same throughput rates. Therefore, we do not need 
to normalize the final results with the throughputs. We ran 
oprofile [20] to profile system performance in the case of the 
receiver. The metrics of interest were: INST_RETIRED, the 

number of instructions retired; BUS_TRAN_ANY, the total 
number of completed bus transactions; and 
BUS_HITM_DRV, the number of HITM (hit modified cache 
line) signals asserted [21]. For these metrics, the number of 
events between samples was 10000. We also enabled the 
Linux Lockstat [12] to collect lock statistics. On this basis we 
calculated the total time spent waiting to acquire various 
kernel locks, and we called this WAITTIME-TOTAL. 
Consistent results were obtained across repeated runs. The 
results are as listed in Fig. 5, with a 95% confidence interval. 

The throughput rates in these experiments all saturated the 
1Gbps link. However, Fig. 5 shows that the metrics of iperf @ 
Core 1 and Core 2 are much higher than those of iperf @ Core 
0. This verifies that when a network application is scheduled 
on cores other than those to which the corresponding network 
interrupts are directed, severely degraded system efficiency 
will result. INST_RETIRED measures the load on the 
receiver. The results demonstrate that contention for shared 
resources between interrupt and application threads led to an 
extra load. The extra load is mainly related to time spent 
waiting for locks. The experimental WAITTIME-TOTAL data 
verify this point. It is surprising that the BUS_TRANS_ANY 
of iperf @ Core 2 is almost twice that of iperf @ Core 0. The 
BUS_HITM_DRV of iperf @ Core 0 is far less that that of 
iperf @ Core 1 and Core 2. Since the throughput rates in these 
experiments all saturated the 1Gbps link, the extra 
BUS_TRANS_ANY and BUS_HITM_DRV transactions of 
iperf @ Core 1 and Core 2 were caused by cache trashing and 
lock contention, as analyzed above. 

2.5 Why does Flow Director cause packet reordering? 

Intel has introduced the Ethernet Flow Director 
technology to remedy the RSS limitation. Flow Director is a 
NIC technology. As shown in Fig. 6, it supports multiple 
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receive queues in 
the NIC, up to the 
number of cores in 
the system. Each 
receive queue has a 
dedicated interrupt 
and is tied to a 
specific core; each 
core in the system 
is assigned a 
specific receive 
queue. Flow 
Director maintains 
a Flow-to-Core table with a single entry per flow. Each entry 
tracks the receive queue (core) to which a flow should be 
assigned. Entries within the Flow-to-Core table are updated by 
outgoing packets. To support Flow Director, OS must be 
multiple TX queue capable [11]. Each core in the system is 
assigned a specific transmit queue. Outgoing traffic generated 
on a specific core is transmitted via its corresponding transmit 
queue. For an outgoing transport-layer packet, the OS records 
the processing core ID and use it to update the corresponding 
entry in the table. Flow Director makes use of the 5-tuple 
{src_addr, dst_addr, protocol, src_port, dst_port} in the 
receive direction to specify a flow. Therefore, for an outgoing 
packet with the header {(src_addr: x), (dst_addr: y), 
(protocol: z), (src_port: p), (dst_port: q)}, its corresponding 
flow entry in the table is identified as {(src_addr: y), 
(dst_addr: x), (protocol: z), (src_port: q), (dst_port: p)}. 
Packet receiving process with Flow Director is similar to that 
of with RSS, except that incoming packets look up the Flow-
to-Core table to identify the core. 

Flow Director not only provides the benefits of parallel 
receive processing in multiprocessing environments, it also 
can automatically steer packets of a data flow to the same core 
on which its application resides. However, our analysis shows 
that Flow Director cannot guarantee in-order packet delivery 
in multiprocessing environments. 

As shown in Fig. 7, at time 

! 

T "# , Flow 1’s flow entry 
maps to Core 0 in the Flow-to-Core table. At this instant, 
packet S of Flow 1 arrives; based on the “Traffic Flow → 
Core” table, it is assigned to Core 0. At time T , due to 
process migration, Flow 1’s flow entry is updated and maps to 
Core 1. At T +! , Packet S+1 of Flow 1 arrives and is 
assigned to the new core, namely Core 1. After assigning 
received packets to the corresponding receive queues, NIC 
copies them into system 
memory via DMA, and 
fires network interrupts, 
if necessary. When a 
core responds to a 
network interrupt, it 
processes received 
packets up through the 
network stack from the 
corresponding ring 
buffer one by one. In 

our case, Core 0 processes packet S up through the network 
stack from Ring Buffer 0, and Core 1 services packet S+1 
from Ring Buffer 1. Let T

service
(S)  and T

service
(S +1)  be the 

times at which the network stack starts to service packets S 
and S+1, respectively. If Tservice(S)> Tservice(S +1) , the network 
stack would receive packet S+1 earlier than packet S, resulting 
in packet reordering. Let D be the ring buffer size and let the 
network stack’s packet service rate be 

! 

R
service

 (packets per 
second). Assume there are n packets ahead of S in Ring Buffer 
0 and m packets ahead of S+1 in Ring Buffer 1. Then it has 
T
service

(S) = T !! + n / R
service  and 

T
service

(S +1) = T +! +m / R
service

. 
If 

! 

"  is small and n >m , the condition of 
T
service

(S)> T
service

(S +1)  would easily hold and lead to packet 
reordering. Since the ring buffer size is 

! 

D, the worst case is 
n = D!1  and m = 0 . It has Tservice(S) = T !! + (D!1) / Rservice  
and Tservice(S +1) = T +! . The ring buffer size D is a design 
parameter for the NIC and driver. For example, the Myricom 
10Gb NIC is 512. 

In a multicore system, a general-purpose OS scheduler 
tries to use all core resources in parallel as much as possible, 
distributing and adjusting the load among the cores. Process 
migration across cores occurs frequently. The conditions for 
Flow Director to cause packet reordering can be easily 
satisfied. Flow Director can easily cause packet reordering.  

To validate our analysis, we ran data transmission 
experiments over an isolated network. A sender was directly 
connected to a receiver via a physical 10Gbps link. The sender 
and receiver are the same computer systems as specified in 
Section 2.4, except that:  

Sender: Myricom 10Gbps Ethernet NIC.  
Receiver: Intel X520 Server Adapter with Flow Director 

enabled (configured with suggested default parameters [11]: 
FdirMode=1, AtrSampleRate=20), 10Gbps, MTU 1500; Linux 
2.6.34 (Multiple TX Queue Capable). 

In our experiments, iperf was used to send n parallel TCP 
streams from sender to receiver for 100 seconds. iperf  was not 
pinned to a specific core in the receiver. Linux was configured 
to run in multicore peak performance mode; the scheduler 
tries to use all core resources in parallel as much as possible, 
distributing the load equally among the cores. Iperf is a multi-
threaded network application. With multiple parallel TCP data 
streams, a dedicated child thread is spawned and assigned to 
handle each stream. As a result, iperf threads may migrate 
across cores. The receiver was instrumented to record out-of-
order packets, and we 
calculated relevant packet 
reordering ratios. The 
experiment results, with a 
95% confidence interval, 
are shown in Table 1. The 
degree of packet reordering 
is significant. At n=200, 
packet reordering ratio 
reaches as high as 0.897%. 

 
Fig. 7 A Simplified Model for 
Packet Reordering Analysis 

 
Fig. 6 Flow Director Mechanism 

n Reordering Ratio 
40 0.498% ± 0.067%  

100 0.705% ± 0.042% 
200 0.897% ± 0.038%  

 
500 0.635% ± 0.154%  

 
1000 0.409% ± 0.009% 
2000 0.129% ± 0.003% 
Table 1 Experiment Results 



The experiment results validated our analysis. When the 
scheduler tries to use all core resources in parallel as much as 
possible, distributing the load equally among the cores, it will 
lead to frequent process migration. As our analysis suggested, 
the Flow Director mechanism would cause packet reordering 
when process migration occurs. In addition, we ran tcpdump 
to record a single stream’s packet trace at the receiver @ 
n=200. The packet trace analysis in Appendix B shows the 
occurrence of duplicate Acknowledgements (ACKs), SACKs, 
and data retransmissions due to packet reordering.  

We then pin iperf to core 0 in the receiver and repeated 
the above experiments. No packet reordering was discovered. 
This is because when iperf is pinned to a specific core, its 
child threads are also pinned to that core. There will be no 
process migration in this case. In these conditions, Flow 
Director does not cause packet reordering. 

The root cause of the packet reordering is that Flow 
Director lacks mechanisms to ensure in-order packet delivery 
when it steers packet across cores. In high-speed networks, 
packet reordering causes various negative impacts [8][9]. 
Many TCP implementations use the header prediction 
algorithm to reduce the costs of TCP processing. However, 
header prediction only works for in-sequence TCP segments. 
If segments are reordered, most TCP implementation do far 
more processing than they would for in-sequence delivery, 
degrading the TCP sender and receiver’s performance. In 
addition, TCP SACK is now implemented and enabled by 
almost all general-purpose OSes. When packet reordering 
occurs, the receiver will sort the out-of-order queue to 
generate SACK blocks. For the sender, on receipt of SACK 
information, the retransmission queue would be walked and 
the relevant packets tagged as sacked or lost. In high-speed 
networks, the number of packets in the fly is large. The 
sender’s retransmission queue is large. Also, when packet 
reordering occurs, out-of-order queue will be very large. 
Sorting our-of-sequence queue in the receiver or walking the 
retransmission queue in the sender can seriously degrade 
system performance [8][10]. Because the networking 
community is working towards 40GigE and 100GigE, the 
performance requirements on TCP/IP are becoming more 
challenging. Flow Director’s packet reordering problem 
becomes more serious. 

3. A Transport Friendly NIC (A‐TFN) 

3.1 A-TFN Design 

We propose A-TFN mechanism to remedy the RSS and 
Flow Director limitations. A-TFN steers incoming network 
data to the same core on which its application thread resides 
and ensures in-order packet delivery. Our data steering 
mechanism is mainly targeted at TCP, but can be extended to 
UDP and SCTP. We base our A-TFN design on two 
observations. First, a TCP connection’s traffic is bidirectional. 
For a unidirectional data flow, ACKs on the reverse path result 
in bidirectional traffic. Second, when an application makes 
socket-related system calls, that application’s process context 
would be borrowed to carry out network processing in process 
context. This is true and common for all general purpose OSes 
although their network stacks are implemented differently. In 

the data transmit path, network processing starts in the process 
context when an application makes socket-related system calls 
to send data. If TCP gives permission to send, network 
processing in process context can reach down to the bottom of 
the protocol stack. In the data receive path, when an 
application makes socket-related receive system calls to 
moves data from the socket into the user space, it needs to 
generate ACKs to advertise new receive window sizes. These 
ACKs are generated in process context. 

A-TFN’s basic idea is simple: it maintains the relationship 
“Traffic Flows → Cores (Applications) in the NIC, with OSes 
correspondingly enhanced to support such capability. For 
transport layer traffic, A-TFN maintains a Flow-to-Core table 
in the NIC, with one entry per flow. Each entry tracks which 
receive queue (core) a flow should be assigned to. With each 
outgoing transport-layer packet (including ACK packet), the 
OS records a processor core ID and uses it to update the entry 
in the Flow-to-Core table. As soon as any network processing 
is performed in a process context, A-TFN learns of the core on 
which an application thread resides and can steer future 
incoming traffic to the right core. This is a key point that A-
TFN is different from Flow Director. 

The design of such a mechanism involves a trade-off 
between the amount of work done in the NIC and in the OS. 
There are two design options. Option 1 is to minimize changes 
in the OS and focuses instead on identifying the minimal set of 
mechanisms to add to the NIC. This design adds complexity 
and cost to the NIC. On the other end of the design space, it 
could be let the OS update the flow-to-core table directly 
without changing anything in the NIC hardware (option 2). 
Conceptually, this approach could be fairly straightforward to 
implement. However, it might add significant extra 
communication overheads between the OS and the NIC, 
especially when the Flow-to-Core table gets large. Due to 
space limitation, this paper is mainly focused on the first 
design option. In our future work, we will explore the second 
design option. Besides, option 1 design has other goals: (1) A-
TFN must be simple and efficient. NIC controllers usually 
utilize a less powerful CPU with a simplified instruction set 
and insufficient memory to hold complex firmware. (2) A-
TFN must preserve in-order packet delivery. (3) The 
communication overheads between the OS and A-TFN must 
be minimal. 

Fig. 8 illustrates the A-TFN details. A-TFN extends the 
current RSS technologies. It supports multiple receive queues 
in the NIC, up to the number of cores in the system. With MSI 
and Flow-Pinning support, each receive queue has a dedicated 
interrupt and is tied to a specific core. Each core in the system 
is assigned a specific receive queue. A-TFN handles non-
transport layer traffic in the same way as does RSS. That is, 
based on a hash of the incoming packet’s headers, the NIC 
assigns it to the same queue as other packets from the same 
data flow, and distributes different flows across queues. For 
transport layer traffic, A-TFN maintains a Flow-to-Core table 
with a single entry per flow. Each entry tracks the receive 
queue (core) to which a flow should be assigned. The entries 
within the Flow-to-Core table are updated by outgoing 
packets. For unidirectional TCP data flows, outgoing ACKs 
update the Flow-to-Core table. For an outgoing transport-layer 
packet, the OS records a processing core ID in the transmit 



descriptor and passes it to the NIC. Since each packet contains 
a complete identification of the flow it belongs to, the specific 
Flow → Core relationship could be effectively extracted from 
the outgoing packet and its accompanying transmit descriptor. 
As soon as any network processing is performed in process 
context, A-TFN learns of on which core an application thread 
resides. 

3.2 Flow-to-Core Table and its Operations 

The Flow-to-Core table consists of flow entries. Flow 
entries are managed in a hash table, with a linked list to 
resolve collisions. Each entry consists of:  
• Traffic Flow. A-TFN makes use of the 5-tuple {src_addr, 

dst_addr, protocol, src_port, dst_port} in the receive 
direction to specify a flow. Therefore, for an outgoing 
packet with the header {(src_addr: x), (dst_addr: y), 
(protocol: z), (src_port: p), (dst_port: q)}, its 
corresponding flow entry in the table is identified as 
{(src_addr: y), (dst_addr: x), (protocol: z), (src_port: q), 
(dst_port: p)}.  

• Core ID. The core to which the flow should be steered. 
• Transition State. A flag to indicate if the flow is in a 

transition state. The goal is to ensure in-order packet 
delivery. 

• Packets in Transition. A simple packet list to 
accommodate temporary packets when the flow is in a 
transition state. The goal is to ensure in-order packet 
delivery. 
In addition, to avoid non-deterministic packet processing 

time, a collision-resolving linked list is limited to a maximum 
size of MaxListSize . Flows are not evicted in case of 
collision. When a specific hash’s collision-resolving list 
reaches MaxListSize , later flows with that hash will not be 
entered into the table. 

a). Flow Entry Generation and Deletion 

A-TFN monitors each incoming and outgoing packet to 
maintain the Flow-to-Core Table. An entry is generated in the 
Flow-to-Core table as soon as A-TFN detects a successful 
three-way handshake. To reduce NIC complexity, A-TFN 
need not run a full TCP state machine in the NIC. A flow 

entry is deleted after a configurable period of time, T
delete

, has 
elapsed without traffic. In this way, A-TFN need not handle 
all exceptions such as missing FIN packets and various 
timeouts. To prevent memory exhaustion or malicious attacks, 
A-TFN sets an upper bound on the number of entries in the 
Flow-to-Core Table. When the Flow-to-Core table starts to 
become full, TCP flows can be aged out more aggressively by 
using a smaller T

delete
. For traffic flows that are not in the 

Flow-to-Core table, packets are delivered based on a hash of 
the incoming packets’ headers. 

b). Detection and Prevention of Packet Reordering 

The entries of the Flow-to-Core table are updated by 
outgoing packets. For each outgoing transport-layer packet, 
the OS records a processing core ID in the transmit descriptor 
and passes it to the NIC. A naive way to update the 
corresponding flow entry is with the passed core ID, omitting 
any other measures. As soon as any network processing is 
performed in process context, A-TFN will learn of the process 
migration and can steer future incoming traffic to the right 
core. However, this simple flow entry updating mechanism 
cannot guarantee in-order packet delivery. In Section 2.5, we 
analyze why Flow Director cannot guarantee in-order packet 
delivery. The model and analysis can be also applied here. As 
we have analyzed, if ! is small and n >m , the condition of 
T
service

(S)> T
service

(S +1)would easily hold and lead to packet 
reordering. Since the ring buffer size is D , the worst case is 
n = D!1   and m = 0 . It would have 
T
service

(S) = T !! + (D!1) / R
service

 and Tservice(S +1) = T +! . TCP 
performance suffers in the event of severe packet reordering 
[8]. However, if the delivery of packet S+1 to Core 1 can be 
delayed for at least (D!1) / R

service
, then 

T
service

(S +1) ! T +! + (D"1) / R
service

. As a result, 
T
service

(S +1)> T
service

(S)   and in-order packet delivery can be 
guaranteed. Therefore, A-TFN adopts the following flow entry 
updating mechanism: for each outgoing transport-layer packet, 
the OS records a processing core ID in the transmit descriptor 
and passes it to the NIC to update the corresponding flow 
entry. For a TCP flow entry, if the new core id is different 
from the old one, the flow enters the “transition” state. 
Correspondingly, its “Transition State” is set to “Yes” and a 
timer is started for this entry. The timer’s expiration value is 
set to T

timer
= (D!1) / R

service
. Incoming packets of a flow in the 

transition state are added to the tail of “Packets in Transition” 
instead of being immediately delivered. When the timer 
expires, the flow leaves the transition state. The “Transition 
State” is set back to “No” and all of the packets in “Packets in 
Transition,” if they exist, are assigned to the new core. For a 
flow in the “non-transition” state, its packets are directly 
steered to the corresponding core. With current computing 
power, (D!1) / R

service
is usually at the sub-millisecond level, 

at best. For A-TFN, T
timer
  is a design parameter and is 

configurable. In contrast, Flow Director does not have an 
effective mechanism to ensure in-order packet delivery. 

3.3 Required OS Support 

 
Fig. 8 A‐TFN Mechanisms 



A-TFN design requires only two small OS changes in 
order to be properly supported. These can be easily 
implemented. (1) For an outgoing transport-layer packet, the 
OS needs to record a processing core ID in the transmit 
descriptor passed to the NIC. (2) The transmit descriptor needs 
to be updated with a new element to store this core ID. A 
single-byte element can support up to 256 cores, which is 
sufficient for most of today’s systems. In addition, the size of 
a transmit descriptor is usually small, typically less than a 
cache line. Transmit descriptors are usually copied to the NIC 
by DMA using whole cache line memory transactions. Adding 
a byte to the transmit descriptor introduces almost no extra 
communication overhead between the OS and NIC. 

4. Analysis and Experiments 

The A-TFN mechanism is simple and requires the most 
minimal OS support. In addition, the communication 
overheads between the OS and A-TFN are reduced to a 
minimum. A-TFN can be effectively implemented with 
current hardware and software technologies. 

4.1 Analytical Evaluation 

a) Delay. To  ensure  in‐order  packet  delivery,  incoming 
packets of a flow in the transition state are added to the tail of 
“Packets in Transition”. These packets are delivered later, 
when the flow exits the transition state. Clearly, this can add 
delay  to  certain  packets  and  the maximum delay a held 
packet can experience is T

timer
. Previous analysis has shown 

that in-order packet delivery is guaranteed when T
timer

 is set to 
(D!1) / R

p . But incoming packets rarely fill a ring buffer in 
the real world. If 

! 

T
timer

 were configured to be smaller, this 
would still ensure in-order packet delivery in most cases. We 
had recorded the duration for which the OS processes the ring 
buffer in [8]. The duration is generally shorter than 20 
microseconds. In most cases the extra delay is so small that it 
can be ignored. 

b) Flow Affinity and Network Data Affinity. The intent of A‐
TFN  is  to automatically  steer incoming network data to the 
same core on which its application thread resides. As soon as 
any network processing is performed in a process context, A-
TFN learns of the core on which an application thread resides 
and can steer future incoming traffic to the right core. The 
desired flow affinity and network data affinity are guaranteed. 

c) Hardware design considerations. A-TFN’s memory is 
mainly used to maintain the Flow-to-Core table, holding flow 
entries and accommodating packets for flows in the transition 
state. To hold a single flow entry, 20 bytes is quite sufficient. 
Therefore, a 10,000-entry Flow-to-Core table requires only 0.2 
MB of memory. (These figures apply to IPv4; IPv6 support 
would add 24 bytes to the size of each entry, or less if the flow 
label could be relied upon.) In addition, to accommodate 
packets for flows in transition, if 

! 

T
timer

 is set to 0.2 millisecond, 
even for a 10Gbps NIC, the memory required is 0.2 ms × 
10Gbps = 0.25 MB, at maximum. In the worst case, an extra 
0.5 MB of fast SRAM is enough to support the Flow-to-Core 

Table. A Cypress 4Mb (10ns) SRAM now costs around $7. 
Appendix C lists the cost, memory size and power 
consumption of three popular 10G Ethernet NICs in the 
market. A-TFN’s requirement of an extra 0.5 MB fast SRAM 
in the NIC won’t add much extra cost and power consumption 
to current 10Gbps NICs. There is other hardware 
implementation cost. A-TFN might utilize content-addressable 
memories (CAMs) to implement the lookup function in the 
flow-to-core table. A linked list in HW is expensive to build 
given all the extra handling. There will be a tradeoff in 
hardware complexity (cost) and A-TFN effectiveness.  

d) 40GigE and 100GigE. The networking community is 
working towards 40GigE and 100GigE. A-TFN must be 
applicable to these emerging technologies. In fact, A-TFN can 
be simply extended to 40GigE or 100GigE except a few small 
changes. First, MaxListSize ,  the maximum size of the 
collision-resolving linked lists of the Flow-to-Core table, 
should be reduced if higher memory speed is not available. 
For a 10GbE NIC, the time budget to process a 1500byte 
packet is around 1200 ns. For a 40GigE and 100GigE NIC, 
such time budget is reduced to 300 ns and 120 ns, 
respectively. In reality, A-TFN’s actual allowable time budget 
to process a packet is even smaller due to the existence of 
smaller sized packets (<1500bytes). Assume A-TFN’s other 
operations such as hash computing and packet delivery totally 
take T

other
 and each item in a linked list takes an extra T

item
 to 

access. Therefore, theMaxListSize for a 40GigE NIC and 
100GigE NIC is approximately (300!T

other
) /T

item
 and 

(120!T
other
) /T

item
, respectively. Second, more memory is 

required to hold packets for flows in transition to ensure in-
order packet delivery. If 

! 

T
timer

 is set to 0.2 millisecond, for a 
40GigE NIC, the memory required is 0.2 ms × 40Gbps = 1 
MB; for a 100GigE NIC, the memory required is 2.5 MB. 

4.2 Experimental Evaluation 

4.2.1 Prototyped Systems 

We prototyped an A‐TFN with  two  receive queues as 
shown  in Fig. 9A. A sender connects  to a receiver via  two 
physical  back‐to‐back  10Gbps  links.  The  sender  and 
receiver  are  the  same  computer  systems  as  specified  in 
Section  2.4.  The  10Gbps  links  are  driven  by  Myricom 
10Gbps Ethernet NICs. In both the sender and the receiver, 
the two Myricom 10Gbps NICs are aggregated into a single 
logical bonded interface with the Linux bonding driver. In 
the  sender,  the  bonding  driver  is  modified  with  A‐TFN 
mechanisms  and  each  10Gbps  link  is  deemed  an  A‐TFN 
receive  queue.  In  the  receiver,  each  slave  NIC  (receive 
queue)  is  pinned  to  a  specific  core.  In  addition,  the 
receiver’s  OS  is  modified  to  support  the  A‐TFN 
mechanisms. For an outgoing transport-layer packet, the OS 
records a processing core ID in the “transmit descriptor” and 
passes it to “A-TFN.” Here, we make use of four reserved bits 
in the TCP header as the “transmit descriptor” to communicate 
the core ID. When the sender receives a “transmit descriptor,” 
it extracts the passed Core ID and updates the corresponding 
flow entry in the Flow-to-Core table. Unless otherwise 



specified, T
timer

is set to 0.1 ms. The Flow-to-Core table is 
upped limited to 10, 000 entries. In our emulated system, we 
measure the Flow-to-Core Table’s search time. The search 
time to access the first item in a collision-resolving linked list 
takes around 260 ns, which includes the hashing and locking 
overheads. For each next item in the list, it takes 
approximately an extra 150 ns. Therefore, the longest search 
in our system takes 260+150*(MaxListSize!1) ns. For a 
10Gbps NIC, the time budget to process a 1500byte packet is 
around 1200 ns. To evaluate  MaxListSize ’s effect on A-
TFN’s performance, we set MaxListSize  to 1 and 6, 
respectively.  Correspondingly, A-TFN is termed as A-TFN-1 
and A-TFN-6. 

Similarly, we implemented a two-receive queue RSS 
NIC, as shown in Fig. 9B. In both the sender and the receiver, 
the two Myricom 10Gbps NICs are aggregated into a single 
logical bonded interface with the bonding driver. In the 
sender, the bonding driver is modified with RSS mechanisms, 
and each 10Gbps link is treated as an RSS receive queue. 
Unless otherwise specified, the hashing is based on the 
combination of {src_addr, dst_addr, src_port, dst_port} for 
each incoming packet. In the receiver, each slave NIC (receive 
queue) is pinned to a specific core. 

4.2.2 Experiment Configurations 

We ran data transmission experiments with iperf using the 
prototyped systems shown in Fig. 9. In our experiments, iperf 
sends with n parallel TCP streams for 100 seconds, to ports 
5001 and 6001, respectively. Therefore, totally 2n parallel 
TCP streams are transmitting in each experiment. The number 
n was varied across experiments. In all the experiments, the 
sender runs the same scripts. The scrip runs in the sender is: 

 iperf –c receiver –P n –t 100 –p 5001 & 
iperf –c receiver –P n  -t 100 -p 6001 & 

The experiment configurations in the receiver are varied 
across experiments. 

Experiment 1 was designed to verify that A-TFN can 
remedy the RSS limitation. In section 2.2 we discussed four 
cases in OSes in which a network application thread resides on 
cores other than those to which its corresponding network 
interrupts are directed. Due to page limitation, we only 
discussed the case that a single-threaded application must 

handle multiple concurrent TCP connections in the 
experiment. In the real world, there are many cases that a 
single-threaded application must handle multiple concurrent 
TCP connections. For example, Nginx [22] and Lighttpd [23] 
are such cases. Nginx and Lighttpd are probably the two best-
known asynchronous HTTP servers. They are event-driven 
and handle multiple concurrent TCP connections in a single 
thread (or at least, very few threads). In Experiment 1, TCP 
streams of a specific port (5001 or 6001) were pinned to a 
particular core in the receiver (Table 2).  In  this  way,  we 
simulated iperf of port 5001 and 6001 as two “single-
threaded” applications that run on core 0 and 2, respectively. 
Each single-threaded application handles n concurrent TCP 
connections. There are a few reasons why we simulated a 
single-threaded application using iperf (a multi-threaded 
application). First, the purpose of the experiments is to verity 
that A-TFN can effectively improve network performance and 
Iperf is a simple and commonly used networking testing tool. 
Second, if a real single-threaded application like Nginx were 
used in the experiments, the complicated software itself might 
interfere with the network performance testing. For example, 
Nginx is event-driven and many of its activities are unrelated 
to network operations. 

Receive Queues 
Config. 

Iperf Config. 
ReceiveQ 0 @ Core 0 “iperf –s –p 5001” @ Core {0} 
ReceiveQ 1 @ Core 2 “iperf –s –p 6001” @ Core {2} 

Table 2 Experiment 1 Receiver Configurations 

Different from Flow Director, A-TFN uses a special flow 
entry updating mechanism to guarantee in-order packet 
delivery. Experiment 2 was designed to evaluate whether this 
mechanism actually works. In Experiment 2, iperfs (ports 
5001 and 6001) were allowed to run on both cores where the 
two receive queues were pinned (Core 0 and 2) (Table 3). 
Linux was configured to run in multicore peak performance 
mode. As a result, iperf threads may migrate across cores. 

Receive Queues 
Config. 

Iperf Config. 
ReceiveQ 0 @ Core 0 “iperf –s –p 5001” @ Core {0, 2} 
ReceiveQ 1 @ Core 2 “iperf –s –p 6001” @ Core {0, 2} 

Table 3 Experiment 2 Receiver Configurations 

4.2.3 Experiment Results 

a) Experiment 1 Results 

Given the same experimental conditions, we compared 
the  results with A‐TFN  to  those with RSS.  The metrics  of 
interest were: (1) Throughput; (2) WAITTIME‐TOTAL; and 
(3)  BUS_HITM_DRV.  (The  number  of  events  between 
samples  was  10000.)  Consistent  results  were  obtained 
across repeated runs. All results presented are shown with 
a 95% confidence interval. 

When  a single-threaded network application handles 
multiple concurrent TCP connections, the hashing function of 
the RSS-enabled NIC will evenly and statistically distribute 
the connections across the cores. Since the application can 

 
A. The prototyped A‐TFN 

 
B. The prototyped RSS 

Fig. 9 Prototyped Systems 



only run on a single core at any given moment, some 
connections get steered to cores other than the one on which 
the application runs. As a result, TCP processing will alternate 
between different cores. This fact may even lead to contention 
for shared resources between interrupt and application threads 
when they concurrently process packets of the same flows. 
Under such circumstances, overall system efficiency could be 
severely degraded. The experimental results in Fig. 10 confirm 
these points. Experiment 1 shows that: (1) A-TFN can 
effectively improve the network throughput. A-TFN-6 
markedly increased the TCP throughput by more than 20% 
with 2n=1000. (2) A-TFN can significantly reduce lock 
contention in parallel network stacks. The  total  time  spent 
waiting  to acquire various kernel  locks was decreased by 
more  than  98%  for  A‐TFN‐6  with  2n=40.  (3) A-TFN can 
substantially reduce system synchronization overhead. 
Experimental data confirms the effectiveness of A-TFN in 
improving network throughput and enhancing system 
efficiency. This is because the design of A-TFN steers 
incoming network traffic to the same core(s) on which its 
application thread resides. Therefore, TCP processing does not 
alternate between different cores and contention involving 
shared resources between interrupt and application threads 
will not occur. In addition, costly MESI operations can be 
greatly reduced. For Experiment 1, the improvements in 
synchronization and cache statistics are substantial, yet they 
do not seem result in equivalent gains in throughput. This is 
because TCP data transmission involves complex interaction 
of the sender and receiver. Certainly, the improvements in 
synchronization and cache statistics in the receiver only 
cannot result in equivalent gains in TCP throughput. In the 

experiments we also noticed that the receiver’s system bus 
approaches saturation, which also partially explains the 
phenomena. We believe that if faster system bus were applied, 
the improvements in synchronization and cache statistics in 
the receiver would result in more gains in throughput.   

For the Flow-to-Core table, when a specific hash’s 
collision-resolving lined list reaches 

! 

MaxListSize , subsequent 
flows for that hash will not be entered into the table. Their 
packets are delivered in the same way as does RSS. It can be 
seen from Fig. 10 that with 2n=40, A-TFN-1’s results 
(especially for throughputs) are very close to those of A-TFN-
6’s. With 2n=2000, A-TFN-1 behaves closer as does RSS. We 
record the percentage of flows that are entered into the Flow-
to-Core table when n is varied in Table 4. It shows that as n 
increases, the percentage of flows that are entered into the 
table decreases, with the effects on A-TFN-1 being much 
more than on A-TFN-6. With 2n=2000, A-TFN-1 has only a 
12.7% of flows entered into the Flow-to-Core table. The 
reason the ratio is so low is because all the flows share a single 
pair of IP addresses, they are not hashed efficiently across the 
table. As a result, more traffic would be delivered in the same 
way as RSS does. From the hardware implementation’s 
perspective, A-TFN-1’s Flow-to-Core table is much easier to 
implement. But its performance is not satisfactory as the 
number of TCP streams increase. Thus, there will be a tradeoff 
in hardware complexity (cost) and A-TFN effectiveness. It is 
anticipated that with n further increased, A-TFN-6 would have 
more traffic delivered in the way as RSS does; its 
effectiveness would start to decrease as well. Normally, a 
high-end web server would handle a few thousand concurrent 
TCP streams. For our two-core A-TFN emulated system, 2000 
streams is quite a high number. Since the trend is already very 
clear, we don’t further increase n. 

2n  A‐TFN‐6  A‐TFN‐1 
40 100% ± 0 88% ± 1.6% 

200 100% ± 0 71% ± 2.9% 
1000 95.7% ± 1.1% 24.5% ± 0.1% 
2000 71.7% ± 0.2% 12.7% ± 0% 

Table 4 Flows @ Flow‐to‐Core Table Percentage 
With RSS technologies, the worst cases occur when soft 

partition technologies, like CPUSET, are applied in the 
networking environments. This can easily lead to the 
undesirable situation in which network applications are soft-
partitioned on cores other than those to which their network 
interrupts are directed. Also, an OS scheduler prioritizes load 
balancing (or power saving) over process-to-interrupt affinity. 
In these environments, network applications may also be 
scheduled on cores other than those where their corresponding 
network interrupts are directed. We ran experiments in these 
environments. All the experiments verify that A-TFN can 
steer incoming network data to the same core on which its 
application thread resides, resulting in improved performance. 

b) Experiment 2 Results 

In Experiment 2, iperfs were allowed to run on both cores 
and Linux was configured to run in multicore peak 
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Fig. 10 Experiment 1 Results 



performance mode. Therefore, iperf threads may migrate 
across cores. The receiver was instrumented to record out-of-
order packets and we calculated relevant packet reordering 
ratios. For A-TFN-6, we set 

! 

T
timer

 to 0 and 100 µs, 
respectively. The experimental results are shown in Table 5.  

When 

! 

T
timer

 is 0, incoming packets of a flow in the 
transition state are immediately delivered, instead of being 
added to the tail of “Packets in Transition.” As discussed 
before, this could lead to packet reordering. The results in 
Table 5 reflect this fact. However, it can be seen that with 
2n=40 and 2n=200, the packet reordering ratio is pretty low. 
This is because our experiments were actually run in a two-
core system. When n is low, fewer iperf threads are spawned 
and process migration would occur less frequently. Therefore, 
less packet reordering would occur. We believe that if the 
experiments were run in a system with more cores, process 
migration would occur more frequently and would lead to 
more incidences of packet reordering even if n were low. On 
the other hand, it can be seen that when n is further increased 
(with 2n=1000 and 2n=2000), the packet ratio steadily 
increases. This is because when n is increased, more iperf 
threads are spawned and process migration will occur more 
frequently in the simulated two-core system. As a result, more 
packet reordering will result.  

When 

! 

T
timer

 is 100 µs, no out-of-order packets are 
recorded. This shows that A-TFN’s packet reordering 
prevention mechanism really takes effect and can effectively 
guarantee in-order packet delivery. 

2n 

! 

T
timer

= 0 (µs) 

! 

T
timer

= 100 (µs) 
40 5.110E-07 ± 6.809E-07 0 

200 6.278E-06 ± 8.553E-06 0 
1000 3.639E-05 ± 2.754E-05 

 

0 
2000 2.174E-04 ± 8.515E-05 0 

Table 5 Packet Reordering Ratios 

5. Related Works 

Over  the  years,  research  on  affinity  in  network 
processing has been extensive. Salehi et al. [2] studied the 
effectiveness  of  affinity‐based  scheduling  in 
multiprocessor  network  protocol  processing  using  both 
packet‐level  and  connection–level  parallelization 
approaches.  But  since  these  approaches  worked  in  the 
user  space,  they  did  not  consider  either  system  or 
implementation  costs.  A.  Foong  et  al.  [3]  experimented 
with  affinitizing  processes/threads,  as  well  as  interrupts 
from  NICs,  to  specific  processors  in  an  SMP  system. 
Experimental  results  suggested  that  processor  affinity  in 
network  processing  contexts  can  significantly  improve 
overall  performance.  J. Hye-Churn et al.  [4]  studied the 
problem of multi-core aware processor affinity for TCP/IP 
over multiple network interfaces, using a software-only 
approach. Their research topics are similar to us. 

Other  researchers  have  adopted  a  hard  partition 
approach  [24][25].  In  multiprocessor  environments,  a 
subset  of  the  processor  is  dedicated  to  network 
processing;  the  remaining  processors  perform  only 

application‐relevant  computations.  The  limitation  of  this 
approach  is  that  the  OS  architecture  requires  significant 
changes. 

The NIC technologies, such as Intel’s vmdq [26] or the 
PCI‐SIG’s  SR‐IOV  [27],  also  provide  data  steering 
capabilities  for  the  NICs.  But  they  are  I/O  virtualization 
technologies  targeting  at  virtual  machines  in  the 
virtualized environment, not  targeting at general purpose 
OSes  in  the  non‐virtualized  environment.  Intel Ethernet 
Flow Director technology [7] can automatically steer 
incoming network data to the same core on which its 
application thread resides. However, Flow Director can cause 
significant packet reordering in multiprocessing environments. 

 The Receive Packet Steering (RPS) [28] and Receive 
Flow Steering (RFS) [29] technologies are recently 
introduced. Both RPS and RFS are OS software technologies, 
instead of NIC technologies. They make use of an extra core 
in a multicore system to spread and steer incoming packets to 
other cores. RPS and RFS complement the RSS and A-TFN 
mechanisms. They are applied when NIC does not support 
RSS or A-TFN. 

6. Conclusion and Discussion 

We propose an A-TFN mechanism to remedy the 
limitations in RSS and Flow Director. In the paper, we discuss 
two A-TFN design options. Due to space limitation, this paper 
is mainly focused on the first design option. The new NIC is 
emulated in software. The experimental results show our 
solution is effective and practical to remedy the limitations we 
have identified in RSS and Flow Director. In future work, we 
will explore the second design option. 

In our experiments, the sender and receiver are connected 
back-to-back. As a result, the Round Trip Time (RTT) is less 
than 0.1ms. With such a small RTT, the packet reordering’s 
negative impacts cannot take full effect. That is the reason 
why we did not present experimental evidence of the impacts 
of various degree of reordering on the overall performance in 
the paper. Luckily, there are various previous researches that 
studied the packet reordering’s negative impacts, which are 
convincing. And we have cited these researches in the paper. 
Readers might ask why not we run the experiments with larger 
RTTs? The answer is simple: we cannot run such experiments 
due to Limits of Current Experiment Conditions. The 
maximum throughput in our experiments is close to 15Gbps. 
In the real world, it is difficult for us to find a network path 
with RTT at least greater than 5ms and with bandwidth greater 
than 15Gbps to run our experiments. Fermilab does have such 
networking facilities to other sites. But these networks run 
production traffic. We are not allowed to run such experiments 
in our production networks. Very few people in the world, if 
not none, can find suitable networks to run our experiments. 
Furthermore, we cannot emulate such a network path in the 
lab environments either. There are tools like Netem [30] that 
provides network emulation functionality by emulating the 
properties of wide area networks. However, almost all these 
tools do no work well in high-speed networks (>5Gpbs) due to 
system clock resolution issues or system bus speed issues. 
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